A TT-Based Hierarchical Framework for Decomposing High-Order Tensors
نویسندگان
چکیده
منابع مشابه
Decomposing Overcomplete 3rd Order Tensors using Sum-of-Squares Algorithms
Tensor rank and low-rank tensor decompositions have many applications in learning and complexity theory. Most known algorithms use unfoldings of tensors and can only handle rank up to nbp/2c for a p-th order tensor in Rnp . Previously no efficient algorithm can decompose 3rd order tensors when the rank is super-linear in the dimension. Using ideas from sum-of-squares hierarchy, we give the firs...
متن کاملDecomposing high-order statistics for sensitivity analysis
Sensitivity analysis in the presence of uncertainties in operating conditions, material properties, and manufacturing tolerances poses a tremendous challenge to the scientific computing community. In particular, in realistic situations, the presence of a large number of uncertain inputs complicates the task of propagation and assessment of output uncertainties; many of the popular techniques, s...
متن کاملAn Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples
We review two similar concepts of hierarchical rank of tensors (which extend the matrix rank to higher order tensors): the TT-rank and the H-rank (hierarchical or H-Tucker rank). Based on this notion of rank, one can define a data-sparse representation of tensors involving O(dnk + dk 3) data for order d tensors with mode sizes n and rank k. Simple examples underline the differences and similari...
متن کاملOn updates of high order cumulant tensors
High order cumulants carry information about statistics of non–normally distributed multivariate data. Such cumulants are utilised in extreme events analysis, small target detection or outliers detection. In this work we present a new algorithm,for updating high order cumulant tensors of random multivariate data, if new package of data is recorded. We show algebraically and numerically, that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2020
ISSN: 1064-8275,1095-7197
DOI: 10.1137/18m1229973